

Measurement of charm rare decays

Claudia Vacca, on behalf of the LHCb collaboration

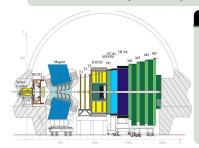
Overview

- o A brief introduction on charm rare decays and LHCb
- LHCb results:

$$\begin{array}{l} \circ \ D^0 \to \mu^+ \mu^- \\ \circ \ D^0 \to \pi^+ \pi^- \mu^+ \mu^- \\ \circ \ D^+_{(s)} \to \pi^+ \mu^+ \mu^- / D^+_{(s)} \to \pi^- \mu^+ \mu^+ \end{array}$$

- Future prospects
- Conclusions

Importance of charm rare decays

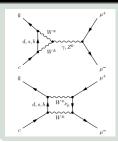

Why charm rare decays

- Flavour Changing Neutral Current (FCNC) processes:
 - o highly suppressed in the SM
 - o only allowed at loop level
 - \circ affected by GIM suppression \to D decays more suppressed than B decays, due to the absence of a heavy down-type quark
- \circ Charm \to investigate up-type quark FCNCs \to studies complementary to those in B and K sectors
- New Physics could enhance SM branching fraction predictions
- Multibody semileptonic decays: angular asymmetries studies
 - \circ A_{CP} and A_{FB} could be enhanced by some NP effects (to $\mathcal{O}(1\%)$ and sometimes $\mathcal{O}(5\%)$)

LHCb

Large Hadron Collider-beauty

- Single-arm forward spectrometer
- o b- and c-hadrons rare decays, CP violation, quark model test
- investigating the physics beyond the Standard Model (matter-antimatter asymmetry)
- \circ reduced luminosity \to few p-p interactions per bunch crossing (better reconstructibility of events)


Why LHCb is a very suitable detector:

- Excellent muon identification
- $0.1.9 < \eta < 4.9$
- \circ High momentum resolution: $0.4\% < \frac{\delta p}{p} < 0.6\%$
- Very good performance in reconstruction of vertices
- o High performance trigger: flexible and configurable
- o 5(2) \cdot 10¹² $D^0(D^+)$ in LHCb acceptance in 3fb⁻¹ of integrated luminosity at $\sqrt{s} = 7 8$ TeV

 $D^0 \rightarrow \mu^+ \mu^-$: strategy

Phys.Lett.B, Vol.725, 2013, 15-24

SM contributions

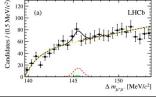
- \circ SM short distance contribution $\mathcal{O} \sim 10^{-18}$
- \circ SM long distance prediction $\mathcal{O} \sim 10^{-11}$ (dominated by the two-photon intermediate state)
- \circ Previous limit $\mathcal{O} \sim 10^{-7}$ Belle Collaboration [PRD 81 (2010) 091102R]

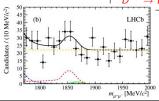
- \circ Signal channel: $D^{*+} \to D^0(\mu^+\mu^-)\pi^+$
- Normalization channel: $D^{*+} o D^0(\pi^+\pi^-)\pi^+$
- \circ Control channels: $D^{*+} \to D^0(K^-\pi^+)\pi^+$, $D^0 \to K^+\pi^+$, $J/\Psi \to \mu^+\mu^-$ (muon identification and trigger efficiency)
- \circ Peaking background (2- or 3-body D^0 decays, hadrons misidentified as muons) \to tight particle identification criteria
- o Combinatorial background \rightarrow multivariate selection (θ_D,χ^2_{JP}) of D^0 and muons tracks, minimum muons $p_T,...$

$$\begin{array}{c} D^0 \to \mu^+ \mu^- \\ D^0 \to \pi^+ \pi^- \\ D^+ \to \pi^+ \mu^+ \mu^- / D^+ \\ (s) \to \pi^+ \mu^+ \mu^- / (s) \end{array} \to \pi^- \mu^+ \mu^+$$

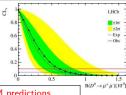
$$D^0 \to \mu^+\mu^-$$
: results

Phys.Lett.B, Vol.725, 2013, 15-24


Unbinned maximum likelihood fit of two-dimensional distributions of:

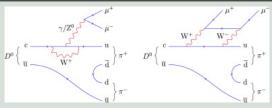

 \circ $m_{\mu^+\mu^-}$

Total distribution ombinatorial background


$$D^{*+} o D^0(K^-\pi^+)\pi^+ \ D^{*+} o D^0(\pi^-\pi^+)\pi^+$$

Upper limit (\sqrt{s} =7 *TeV*, 0.9 fb^{-1}):

$$\mathcal{B}(D^0 o \mu^+ \mu^-) < 6.2 (7.6) \cdot 10^{-9} \text{ at } 90\% (95\%) \text{ CL}$$

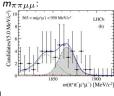


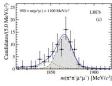
Improved by a factor 20

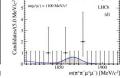
$$D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$$
: strategy

Phys.Lett.B, Vol.728, 2014, 234-243

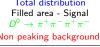
SM contributions

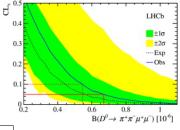

- SM prediction $\mathcal{O}(\lesssim 10^{-9})$
- Previous limit $\mathcal{O}(\sim 10^{-5})$ E791 Collaboration [PRL 86(2001)3969]
- Signal: $D^{*+} \to D^0(\pi^+\pi^-\mu^+\mu^-)\pi^+$
- o Control leakage from resonant regions into low and high dimuon mass
- \circ Signal regions away from $\eta,~\rho^0$ and ϕ resonances (250 $< m_{\mu\mu} < 525 MeV/c^2,$ $m_{\mu\mu} > 1100 MeV/c^2)$
- \circ Peaking background $D^0 o \pi^+\pi^-\pi^+\pi^- + ext{combinatorial}$
- \circ Reference sample: $D^0 \to \pi^+\pi^-\phi(\to \mu^+\mu^-)$
- o Combined multivariate analysis (θ_D, χ^2 of D^0 decay vertex and fligh distance,p and ρ_T of all tracks,...) and muon particle identification


$$D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$$
: results


Phys.Lett.B. Vol.728, 2014, 234-243

Unbinned maximum likelihood of two-dimensional distributions of $m_{\pi\pi\mu\mu}$ and

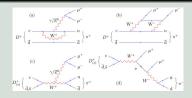

 $\Delta m = m_{\pi\pi\mu\mu\pi} - m_{\pi\pi\mu\mu}$: andidates/(5.0 MeV/c-250 < m(u*u*) < 525 MeV/c2 $m(\pi^+\pi^-\mu^+\mu^-)$ [MeV/c²]



Total distribution Filled area - Signal $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$ Non peaking background

Upper limit ($\sqrt{s} = 7$ TeV, 1 fb⁻¹):

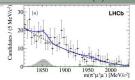
$$\mathcal{B}(D^0 \to \pi^+\pi^-\mu^+\mu^-) < 5.5(6.7) \cdot 10^{-7} \text{ at } 90\%(95\%) \text{ CL}$$

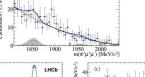


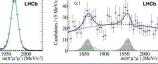
x70 improvement — 2 orders of magnitude above SM predictions

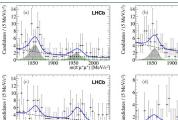
$$D_{(s)}^+ o \pi^+ \mu^+ \mu^- / D_{(s)}^+ o \pi^- \mu^+ \mu^+$$
: strategy

Phys.Lett.B, Vol.724, 2013, 203-212

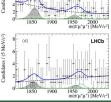

SM contributions




- \circ Previous limits: $D^+ \to \pi^- \mu^+ \mu^+ \ \mathcal{O} \sim (10^{-6})$ Babar Collaboration[PRD 84(2011)072006] $D_s^+ \to \pi^- \mu^+ \mu^+ \ \mathcal{O} \sim (10^{-5}) \text{ Babar Collaboration[PRD 84(2011)072006]} \\ D^+ \to \pi^+ \mu^+ \mu^- \ \mathcal{O} \sim (10^{-6}) \text{ D0 Collaboration [PRL 100(2008)101801]} \\ D_s^+ \to \pi^+ \mu^+ \mu^- \ \mathcal{O} \sim (10^{-5}) \text{ FOCUS Collaboration [PRB 572 (2003)21]}$
- Control leakage from resonant regions
- \circ Control channel $D^+_{(s)} \to \pi^+(\phi \to \mu^+\mu^-)$
- \circ Peaking background $D_{(s)}^+ \to \pi^+\pi^+\pi^-$
- Multivariate analysis (θ_D, χ^2 of $D^+_{(s)}$ decay vertex and fligh distance,p and p_T of all tracks,...) + particle identification selection


$$D_{(s)}^+ o \pi^+ \mu^+ \mu^- / D_{(s)}^+ o \pi^- \mu^+ \mu^+$$
: results I

Phys.Lett.B. Vol.724, 2013, 203-212



1900

LHCb

Binned maximum likelihood fit

$$\circ~D^+_{(s)}
ightarrow \pi^+ \mu^+ \mu^-$$
 in m($\mu^+ \mu^-$) bins:

$$\circ$$
 a) low-m($\mu^+\mu^-$)

250-525
$$MeV/c^2$$

• c) high-m(
$$\mu^+\mu^-$$
)

850-1850
$$MeV/c^2$$

1250-2000 MeV/c^2

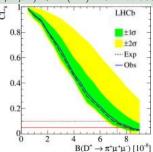
Total distribution

Signal

Solid area-Peaking background Dashed line-Non peaking background

•
$$D^+_{(s)} \to \pi^- \mu^+ \mu^+$$
 in m($\mu^+ \pi^-$) bins:

- \circ a) 250-1140 MeV/ c^2
- \circ b) 1140-1340 MeV/ c^2
- \circ c) 1340-1550 MeV/ c^2
- \circ d) 1540-2000 MeV/ c^2


$$\begin{array}{c} D^{0} \to \mu^{+}\mu^{-}_{D^{0}} \\ D^{0} \to \pi^{+}\pi^{-}\mu^{+}\mu^{-} \\ D^{+} \to \pi^{+}\mu^{+}\mu^{-} / D^{+}_{(s)} \to \pi^{-}\mu^{+}\mu^{+} \end{array}$$

$$D_{(s)}^+ o \pi^+ \mu^+ \mu^- / D_{(s)}^+ o \pi^- \mu^+ \mu^+$$
: results II

Phys.Lett.B, Vol.724, 2013, 203-212

Upper limits ($\sqrt{s} = 7 \, TeV, 1 fb^{-1}$):

$$\mathcal{B}(D^+\to\pi^+\mu^+\mu^-)<7.3(8.3)\cdot 10^{-8}$$
 at $90\%(95\%)$ CL $\mathcal{B}(D_s^+\to\pi^+\mu^+\mu^-)<4.1(4.8)\cdot 10^{-7}$ at $90\%(95\%)$ CL $\mathcal{B}(D^+\to\pi^-\mu^+\mu^+)<2.2(2.5)\cdot 10^{-8}$ at $90\%(95\%)$ CL $\mathcal{B}(D_s^+\to\pi^-\mu^+\mu^+)<1.2(1.4)\cdot 10^{-7}$ at $90\%(95\%)$ CL

Improved by a factor 50

1 order of magnitude above largest NP predictions for $D_s^+ o \pi^+ \mu^+ \mu^-$

Future prospects: ongoing

Analyses in progress or planned

- \circ Lepton Flavour Violation $D^0 o e^\pm \mu^\mp$
- $\circ~D^0 \to K^\mp \pi^\pm \mu^+ \mu^-$
- \circ Update of $D^0 o \mu^+\mu^-$
- $\circ \Lambda \to p\mu\mu$
- $\circ D^0 \to \phi \gamma$
- o ...and some others planned

Future prospects: run II and upgrade

 \circ LHCb Run II: $8 \textit{fb}^{-1},\, \sqrt{\textit{s}} = 13 \textit{TeV}$

• LHCb Upgrade: $50fb^{-1}$, $\sqrt{s} = 14 \text{ TeV}$

Predictions on branching fractions's upper limits:

Assuming the same efficiency and signal-to-background ratio:

Mode	Run I	Run II	Upgrade
$D^0 o hh' \mu^+ \mu^-$	few 10 ⁻⁷	fewer 10^{-7}	10^{-8}
$D^0 o \mu^+\mu^-$	few 10 ⁻⁹	fewer 10^{-9}	10^{-10}
$D^+ o \pi^+ \mu^+ \mu^-$	few 10^{-8}	fewer 10^{-8}	10^{-9}
$D_s^+ o K^+ \mu^+ \mu^-$	few 10^{-7}	fewer 10^{-7}	10-8
$\Lambda o p \mu \mu$	few 10 ⁻⁷	fewer 10^{-7}	10^{-8}
$D^0 o e\mu$	few 10^{-8}	fewer 10^{-8}	10^{-9}
$\sigma_{A_{CP}}(D^0 o \phi \gamma)$	10%	5%	?

Future prospects: run II and upgrade

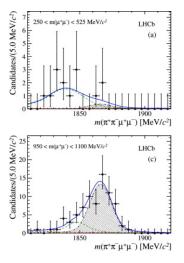
Predictions on asymmetries sensitivity:

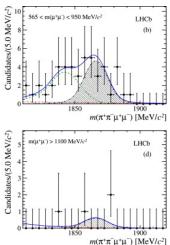
Assuming the same efficiency and signal-to-background ratio:

Mode	Run II	Upgrade
$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	0.6%(30000 events)	0.2%(300000 events)
$D^0 o \pi^+\pi^-\mu^+\mu^-$	3%(1500 events)	1%(15000 events)
$D^0 o K^- \pi^+ \mu^+ \mu^-$	1%(10000 events)	0.3%(100000 events)
$D^0 \rightarrow K^+\pi^-\mu^+\mu^-$	40%(30 events)	12%(300 events)
$D^0 o K^+K^-\mu^+\mu^-$	11%(150 events)	4%(1500 events)

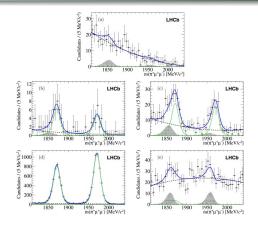
These predictions could improve under the upgrade conditions:

- o offline reconstruction quality available in a fully software trigger ($\epsilon \sim x3$)
- other improvements in the analyses
- o combinations of modes might matter more than individual sensitivities


Conclusions


- The results shown are all best world limits
- \circ Results on $D^0 \to e\mu$ and $D^0 \to K\pi\mu\mu$ will become public very soon
- Upgrades ongoing or planned
- Wait for Run II data

Overview A brief introduction Measurements Future prospects Conclusions


Backup Slides

$$D^0 \to \pi^+ \pi^- \mu^+ \mu^-$$

$$D_{(s)}^+ \to \pi^+ \mu^+ \mu^-$$

Trigger conditions	Bin description	$m(\mu^+\mu^-)$ range [MeV/ c^2]	D^+ yield	D_s^+ yield
	$low-m(\mu^+\mu^-)$	250 - 525	-3 ± 11	1 ± 6
Triggers without	η	525 - 565	29 ± 7	22 ± 5
$m(\mu^+\mu^-) > 1.0 \text{ GeV}/c^2$	ρ/ω	565 - 850	96 ± 15	87 ± 12
	φ	850 - 1250	2745 ± 67	3855 ± 86
All triggers	φ	850 - 1250	3683 ± 90	4857 ± 90
An origgers	$high-m(\mu^+\mu^-)$	1250 - 2000	16 ± 16	-17 ± 16

$$D_{(s)}^+ \to \pi^+ \mu^+ \mu^-$$

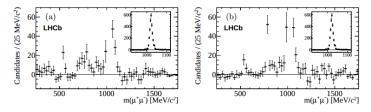
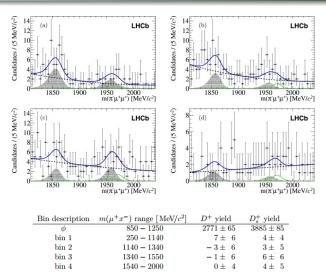



Figure 4: Background-subtracted $m(\mu^+\mu^-)$ spectrum of (a) $D^+ \to \pi^+\mu^+\mu^-$ and (b) $D^+_s \to \pi^+\mu^+\mu^-$ candidates that pass the final selection. The inset shows the ϕ contribution, and the main figure shows the η and the ρ/ω contributions. The non-peaking structure of the low and high- $m(\mu^+\mu^-)$ regions is also visible.

$$D_{(s)}^+ \to \pi^- \mu^+ \mu^+$$

Olga Kochebina PhD Tl

Model name	Main characteristics	Affected observables
,	$c \rightarrow u\mu^{+}\mu^{-}$ current is possible at tree	
Minimal Su- persymmetric Model with R-parity violation (MSSM R)	level via down-type squark. It has a very large impact on G_0 and G_{20} , quantified in [40, 50], and updated in [22] in the light of the constraints brought in 2007 by the discovery of the D^p mixing. In the light of recent constraints from $K \to m\nu \sigma$ decays and charm decays, there is now little hope tog et sizeable contributions from this kind of NP to the decays we are interested in. See for instance [54].	For $D^+ \to \pi^+ \mu^+ \mu^-$: $\mathcal{B} = 6.5 \times 10^{-6}$ [52], recently measured $\mathcal{B} < 7.3 \times 10^{-8} 69.9\% CL$ [13]. New constraints from $D^0 \to \mu^+ \mu^-$: $\mathcal{B} = 2 \times 10^{-8}$ [55]
Extra up-like quark singlet	New quark doublet or singlet, extended CKM matrix. The FCNC possible at tree level with cuZ coupling. A study of their impact can be found in [56], with an update in [52]. Large effects on C ₉ and C ₁₀ were predicted there.	For $D^+ \to \pi^+ \mu^+ \mu^-$: $\mathcal{B} = 1.6 \times 10^{-9}$ [52]. For $D^0 \to \rho^0 l^+ l^-$: $\mathcal{A}_{FB} \sim \text{few } \%$
Littlest Higgs Model	Particular version of models with αZ coupling, where the Higgs boson is a pseudo-Numbu-Goldstone boson of spontaneously broken global symmetry. It contains a new massive gauge boson and a new up-like quark ℓ . Weak currents are modified, CKM is extended to be 4×3 [56, 57]. The model modifies coefficients G_0 and G_{10} . In particular, C_{10} , while z 0 in the SM becomes of the order of G_2 [56].	For $D^+ \to \pi^+ \mu^+ \mu^-$: $\mathcal{B} = 8.0 \times 10^{-11}$ [57]; For $D^0 \to p^0 \mu^+ \mu^-$: $\mathcal{A}_{FB} \sim \mathcal{O}(10^{-3})$ [57]
Leptoquark model	Carrying both lepton and baryon numbers, new bosons can couple to a lepton and a quark [58].	For $D^+ \rightarrow \pi^+ \mu^+ \mu^-$: $\mathcal{B} = 9.4 \times 10^{-8} [58]$
Randall- Sundrum model with a warped extra dimension	New gauge bosons appear, that mediate flavour violation. It brings a small contribution to C_9 , which at the most could be comparable to the SM value (for some marginal values of the models parameters). On the other hand, as in other models, the tiny C_{10} is enhanced by several orders of magnitude [51].	For $D \rightarrow X_u \mu^+ \mu^-$: A_{FB} , $A_{CF} \sim \text{few } \%$ $A_{FB}^{CP} > \mathcal{O}(10\%)$ [51]

Olga Kochebina PhD Th

Model name	Main characteristics	Affected observables
Minimal Su- persymmetric Model with R-parity conservation (MSSM R)	New sources of flavour symmetry breaking. In the mass insertion approach, off-diagonal elements in the squark mass matrix yield flavour changing couplings matrix prices and supplies of flavour i , of helicity H and type q (up or down), to of helicity H and type q (up or flavour i , of helicity H and type q . Loop amplitudes as that in Figure 1.19(a) are then possible. They enhance C_T , C_S and C_S . This of decises of 100 , 90 –66]].	For $D^0 \to \rho^0 \mu^+ \mu^-$: $\mathcal{B} \simeq 1.3 \times 10^{-6}$ [49]
Littlest Higgs Model with T-parity (LHT)	LH Model with additional T-parity. Enhancement of the C_9 and C_7 is very small. The main effect is in fact on C_{10} , which is enhanced by orders of magnitude.	For $D \rightarrow X_u \mu^+ \mu^-$: $A_{FB} \sim \mathcal{O}(0.5\%)$, A_{FB}^{CP} up to $\mathcal{O}(10\%)$ [47]
Generic models with generated weak phases	Models that generate weak phases acquired by C_7 and C_9 without sensitive impact on C_{10} [46].	For $D^+ \to \pi(\mu^+\mu^-)_{\phi}$: $A_{CP} \sim \mathcal{O}(1\%-10\%)$ [46]
Generic Z-mediated models	Loop amplitudes with an internal $Z^{(1)}$ and an internal top quark (Figure 1.19(b)) can bring C_9 and C_{10} up to $O(1)$, if the couplings they involve are tuned to reproduced the measured value of ΔA_{CP} [18].	For $D^+ \to h^+ h^{(\prime)} = \mu^+ \mu^-$ [18]: $A_{T_{odd}}$ up to 8%, A_{FB} up to 3%

Table 1.6: Overview of the NP theoretical models that have FCNC at loop level. The estimates of affected observables are presented as well

Olga Kochebina PhD Th

- [18] L. Cappiello, O. Cata, and G. D'Ambrosio, Standard Model prediction and new physics tests for D⁰ → h⁺h⁻l⁺l[−] (h = π, K: l = e, μ), JHEP 1304 (2013) 135, arXiv:1209.4235.
- [46] S. Fajfer and N. Kosnik, Resonance catalyzed CP asymmetries in D → Pl⁺l⁻, Phys. Rev. D87 (2013) 054026, arXiv:1208.0759.
- [47] A. Paul, I. I. Bigi, and S. Recksiegel, On D → X_ul⁺l⁻ within the Standard Model and Frameworks like the Littlest Higgs Model with T Parity, Phys. Rev. D83 (2011) 114006, arXiv:1101.6053.

Olga Kochebina PhD Th

- [49] G. Burdman, E. Golowich, J. L. Hewett, and S. Pakvasa, Rare charm decays in the standard model and beyond, Phys. Rev. D66 (2002) 014009, arXiv:hep-ph/0112235.
- [50] G. Burdman and I. Shipsey, D⁰ D

 ⁰ mixing and rare charm decays, Ann. Rev. Nucl. Part. Sci. 53 (2003) 431, arXiv:hep-ph/0310076.
- [51] A. Paul, A. de La Puente, and I. I. Bigi, Manifestations of Warped Extra Dimension in Rare Charm Decays and Asymmetries, arXiv:1212.4849.
- [52] S. Fajfer, N. Kosnik, and S. Prelovsek, Updated constraints on new physics in rare charm decays, Phys. Rev. D76 (2007) 074010, arXiv:0706.1133.
- [53] LHCb Collaboration, R. Aaij et al., Evidence for CP violation in time-integrated D⁰ → h⁻h⁺ decay rates, Phys. Rev. Lett. 108 (2012) 111602, arXiv:1112.0938.
- [54] I. Dorsner, S. Fajfer, J. F. Kamenik, and N. Kosnik, Can scalar leptoquarks explain the f(D(s)) puzzle?, Phys. Lett. B682 (2009) 67, arXiv:0906.5585.
- [55] N. Kosnik, Talk, Theory implication for Rare charm decays on the workshop on the Implications of LHCb measurements and future prospects, CERN, 14-16 October 2013, https://indico.cern.ch/event/255380/session/2/contribution/14 (2013).
- [56] S. Fajfer and S. Prelovsek, Search for new physics in rare D decays, Conf. Proc. C060726 (2006) 811, arXiv:hep-ph/0610032.
- [57] S. Fajfer and S. Prelovsek, Effects of littlest Higgs model in rare D meson decays, Phys. Rev. D73 (2006) 054026, arXiv:hep-ph/0511048.
- [58] S. Fajfer and N. Kosnik, Leptoquarks in FCNC charm decays, Phys. Rev. D79 (2009) 017502, arXiv:0810.4858.
- [59] G. Isidori and J. F. Kamenik, Shedding light on CP violation in the charm system via D to V gamma decays, Phys. Rev. Lett. 109 (2012) 171801, arXiv:1205.3164.
- [60] J. Lyon and R. Zwicky, Anomalously large O₈ and long-distance chirality from A_{CP}[D⁰ → (ρ⁰, ω)γ](t), arXiv:1210.6546.
- [61] G. F. Giudice, G. Isidori, and P. Paradisi, Direct CP violation in charm and flavor mixing beyond the SM, JHEP 1204 (2012) 060, arXiv:1201.6204.